Sobolev Metrics on Diffeomorphism Groups and the Derived Geometry of Spaces of Submanifolds

نویسندگان

  • MARIO MICHELI
  • PETER W. MICHOR
  • DAVID MUMFORD
چکیده

Given a finite dimensional manifold N , the group DiffS(N) of diffeomorphism of N which fall suitably rapidly to the identity, acts on the manifold B(M,N) of submanifolds on N of diffeomorphism type M where M is a compact manifold with dimM < dimN . For a right invariant weak Riemannian metric on DiffS(N) induced by a quite general operator L : XS(N)→ Γ(T ∗N⊗vol(N)), we consider the induced weak Riemannian metric on B(M,N) and we compute its geodesics and sectional curvature. For that we derive a covariant formula for curvature in finite and infinite dimensions, we show how it makes O’Neill’s formula very transparent, and we use it finally to compute sectional curvature on B(M,N).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrinsic sphere and totally umbilical submanifolds in Finsler spaces

‎Based on a definition for circle in Finsler space‎, ‎recently proposed by one of the present authors and Z‎. ‎Shen‎, ‎a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field‎, ‎if and only if its circles coincide with circles of the ambient...

متن کامل

Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle

In this paper, we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphism group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...

متن کامل

The Homogeneous Sobolev Metric of Order One on Diffeomorphism Groups on the Real Line

In this article we study Sobolev metrics of order one on diffeomorphism groups on the real line. We prove that the space Diff1(R) equipped with the homogenous Sobolev metric of order one is a flat space in the sense of Riemannian geometry, as it is isometric to an open subset of a mapping space equipped with the flat L2-metric. Here Diff1(R) denotes the extension of the group of all either comp...

متن کامل

Right-invariant Sobolev Metrics of Fractional Order on the Diffeomorphisms Group of the Circle

In this paper we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphisms group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...

متن کامل

Why Use Sobolev Metrics on the Space of Curves

In this chapter we study reparametrization invariant Sobolev metrics on spaces of regular curves. We discuss their completeness properties and the resulting usability for applications in shape analysis. In particular, we will argue, that the development of efficient numerical methods for higher order Sobolev type metrics is an extremely desirable goal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012